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ABSTRACT 
A three-dimensional microelectronic device 

(3DANN-R) capable of performing general image 
convolution at the speed of lo'* operations/second 
(ops) in a volume of less than 1.5 cubic centimeter 
has been successfully built under the BMDO/JPL 
VIGILANTE program. 3DANN-R was developed in 
partnership with Irvine Sensors Corp., Costa Mesa, 
California. 3DANN-R is a sugar-cube-sized, low- 
power image convolution engine that in its core 
computation circuitry is capable of performing 64 
image convolutions with large (64x64) windows at 
video frame rates. 

In this paper, we explore potential applications 
of 3DANN-R such as target recognition, SAR and 
hyperspectral data processing, and general machine 
vision using real data and discuss technical 
challenges for providing deployable systems for 
BMDO surveillance and interceptor programs. 

INTRODUCTION 
The Viewing Imager/(;imbaled Instrumentation 

processing Experiment (VIGILANTE) program [ 11- 
[2] has successfully developed a three-dimension 
microelectronic device (3DANN-R) capable of 
performing general image convolution at the speed of 
10l2 operations/second (ops) in a volume of less than 
1.5 cubic centimeter. 3DANN-R  was developed in 
partnership with Irvine Sensors Corp., Costa Mesa, 
California. 3DANN-R is a sugar-cube-sized, low- 
power image convolution engine that  in its core 
computation circuitry is capable of performing 64 
image convolutions with large (64x64) windows at 
video frame rates (see Fig. 1). Fast image 
convolution is fundamental to almost all techniques 
used  in processing images acquired from either 
passive or active sensors. Numerous operations, 
including template matching, morphology, 
classification, and even many model-based matching 
approaches can be  solved using correctly assembled 
convolution results. By being able to simultaneously 
generate 64 transformations of an original image, 
new capability in synthetic image generation, 
analysis/fusion, and semantic interpretation can be 
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realized with human-like efficiency. 3DANN-R  has 
been  proven to function properly and it can already 
be  produced in small quantities for less than $70,000 
per unit. The device might cost only a few hundred 
dollars under mass production. 

Figu !re slution 
processor,  containing 64 row  convolver IC's capable 
of 1 TeraOPS in a  1.4cm x 1.45cm x .75 c d 5 W  
package. 

For demonstration purposes, the 3DANN-R 
requires a PC-case and associated computer circuitry 
to convert all 64 channels to digital form through a 
single, very high-speed, analog-digital converter 
(ADC)  and  then place those data values in an 
integrated memory that could be directly interfaced to 
any computer architecture (see Fig. 2). This 
VIGILANTE processing architecture creates a real- 
time, low-mass/power microelectronic visual center 
capable of transforming raw imagery into a myriad of 
synthetic images useful for a variety of machine 
vision  and automatic target recognition (ATR) 
applications. 

In this paper, we explore potential applications 
of 3DANN-R such as target recognition, synthetic 
aperture radar (SAR) and hyperspectral data 
processing, and general machine vision using real 
data and discuss technical challenges for providing 
deployable systems for BMDO surveillance and 
interceptor programs. 
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3DANN-R consisted of 64 AD& (10 bits) with low- 
noise pre-amplijiers, 3 FPGAs (100,000 gates) and 
128 Mbytes of memory. 

SYSTEM DESCRIPTION 
The  system is a combination of a P6-based  host 

computer  on a PC1  backplane  and a PC1 expansion 
chassis that contains the 3DANN-R sugarcube 
processor, custom high-speed PC1 interface I/O 
cards, SHARC  board, and a memory  buffer  (see  Fig. 
3). 
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Figure 3: The VIGILANTE processing architecture 
that orchestrates the data flow  from image frame 
buffer through neural processor  also serves as the 
basis for developing methodologies for  ATR 
applications. 

Support electronics for 3DANN-R include a 
Y’x9” 24-layer printed circuit board  comprised of 64 
low-noise pre-amplifiers driving 64 10-bit ADCs  and 
a motherboard  with  three 100,000-gate Field 
Programmable  Gate Arrays (FPGA) and 128 Mbytes 
of  memory (Fig. 2). The input image is  stored in a 
frame buffer that is  baselined at 256x256 8-bit  pixels 
frame and can  accommodate up  to 30 frames  per 

second.  The host processor transfers and formats the 
selected sensor  image  once  every  250 ns. The 
formatting of data involves  rearranging  a raster 
version of the 256x256 image  and storing it into 64- 
byte  wide contiguous memory  word locations. Every 
250ns, a formatted 64-byte row or column  image data 
is  loaded  into  an array of 64x64 D-to-A converters 
internal  to  3DANN-R. 

(b) 
Figure 4: The 3DANN-R die chip layout (a)  and 
block diagram (b). 

A set of 64  templates  (64x64)  can be 
simultaneously  handled by 3DANN-R. Each 
3DANN-R  mixed-signal  ASIC (352milsx549mils 
0.6pm CMOS), shown in Fig. 4, is a set of 64 row 
convolvers  capable of 10” operations/second (ops) 
for a stack of 64 [3]. Over 1 million transistors are 
employed to provide  a 9-bit serial digital interface. 
4096 8-bit  multiplying DACs store templates (filters) 
that are multiplied  with 64  row-templates to produce 
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one of 64  analog outputs. Outputs of  the stack of 64 
dies are bussed together to provide current  sums  from 
each IC, thus provides an  image  convolution engine 
for 2D image processing. A complete set of 64 
templates  (64x64) can  be  loaded in 1 ms. 

Analog  outputs  from 3DANN-R every 250 ms 
are digitized (8-bit resolution) and loaded into a 
memory buffer for output  processing by the SHARC 
board. Closing the data loop, the  host  processor  can 
evaluate results from the SHARC board  and setup 
scenarios for ATR. 

TARGET  RECOGNITION 
Since  conventional brute-force template 

matching is usually unreliable in  highly cluttered 
environments (such as in Fig. 5), we have 
investigated a neural  network classification based  on 
eigenvector projections, see  Fig.  6. For our 
experiment using 3DANN-R, we employ directed 
principal component analysis [4] to generate  the 
generalized eigenvectors for the filter set: 

S W = I , R W  (1) 

where S is the covariance matrix  for  the  images  with 
targets, R is the covariance matrix  for  the  images 
without targets, and W is  the  directed  principal 
components used as the filter set. 

Figure 5: The  brute-force  template matching with  a 
template mask of the target in a slightly direrent 
angle, although  provide local maximum 
corresponding to the target location in the 
correlation  image,  generates  a false positive result 
when seeking absolute  maximum. 

Figure 7 shows the set of the linear filter set 
used as templates for 3DANN-R processing to 
produce  outputs for each test image  frame (see Fig. 
8). 16 templates are employed for this particular 
application. 
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Object  Library 
Figure 6: Eigenvectorheural  network-based target 
recognition synthesizes multiple  composite filters 
using Eigenvectors  generated from the object library 
for 3DANN-M processing  and classijies 
corresponding  output  value  with  a  feed-forward 
neural  network  (which  can be done in the SHARC 
board). 

Figure 7: Synthesizedfilter set (target  views  and 
scales  vary by 20 degrees and 20%. 

3 



UNCLASSIFIED 

Figure 8: Test  image (left)  and example  outputs 
(corresponding  to the 0“ and 13Ih template of Fig. 7) 
of cube. 

The final steps in  our  target  recognition 
algorithm  involves clustering of each  pixel  location 
based  on  the 16 projected values  from  the  templates 
(20 clusters) and  then employing a specialized expert 
neural network (trained only  on examples  from its 
particular cluster) for classification. The networks 
have  been trained off-line using  back  propogation, 
and the output  from this classifier (shown  in  Fig. 9) 
demonstrates recognition of the  target  in a clutered 
environment  through multiple viewing angles and 
scales.  Detailed performance analysis of this 
technique  can  be found  in [3]. 

Figure 9: Classifier  outputs for a  sequence of test 
images. 

SAR DATA PROCESSING 
Raw data  from SAR are provided in  the Fourier 

domain  where a set of complex  numbers 
corresponding to  the Fourier-transform of the radar 
signals for various azimuth  angles (a) is given for 
each  range  value (4. To derive SAR images  from 
the  raw data, a series of 1-dimensional inverse 
Fourier  transform  operation is required: 

fda)  = xw [R&)+jIAw)] [cos(2xoCl/N) + jsin(2xoa/N)] (2) 

where RAW) and Id(w) are the real and  imaginary part 
of the raw data and fAa) is  the  processed SAR data. 

The test data shown in Fig. 10 contains 256 a- 
values  for each of the 64 d-values. 

Figure IO: The magnitude of the complex  (FFT) SAR 
data  and the inverted  distance vs. angle  magnitude 
response of a  Boeing727. 

Since fda)  is a real-valued function, fda) is 
determined  using: 

f ~ a ) ’  = ( ~ , [ R A ~ ) C O S ( ~ ~ W ~ ) I  - ~ w [ ~ d w ) s i n ( 2 x w ~ ) 1 ) Z  + 
(xw[I,,(w)cos(2xwa/N)] + xW[%(w)sin(2xwCl/N)])’ (3) 

Using  3DANN-R, Eq. (3) for the above test data 
must  be  implemented  in 64-value blocks  and can be 
accomplished as follows: 
1)  Load  into channel#l {cos(27cwa), a=0,1, ... 7, 

w=O,l,. . .,255} (note that each a value  will 
occupy 4  rows), channel#2 {cos(27coa), 
a=8,9,. . .,15, w0,1, .  . .,255}, . . . , channel#32 
{ cos(27coa), ~ ~ 2 4 8 , 2 4 9 , .  . .,255, w=O,l,. . .,255}. 

2) Load  into channel#33-channel#64 the 
sin(27coa)components. 

3) Load  the 64x64 input image of 3DANN-R with 
{Rd(w), d=l, o=O,l, ..., 255) in the first 4rows 
and zero for  the remaining rows. 

4) Readout channels 1-32 for %cos(a) and 33-64 for 
m i n ( a ) ,  shift  down  the input image by 4  rows 
and repeat this step 8 times. 
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Compile );,[ICl(w)cos(2nocc/N)] and 
Zm[%(o)sin(2noa/N)] outputs, and repeat Steps 2-4 
for d=2,3,. . . , 6 4 .  
Repeat Steps 3-5 for ~~[I~w)cos(2nwcc/N)]  and 

Generate f xa )  by taking the square root of the 
final summation shown in Eq. (3). 

Z"[Id(o)cos(2nwm)]. 

Figures 11 and 12 show the result of the 
calculation performed digitally and  the corresponding 
result from the  cube respectively. A total of about 1 
msec is required to complete the 64x256 SAR  image 
(assuming the sin and cos templates are pre-loaded). 

Figure 11: Real  component of the  output  SAR image. 

Figure 12: Imaginary  component of the  output  SAR 
image. 

Figure 13: The combined SAR image. 

HYPERSPECTRAL DATA PROCESSING 
Hyperspectral data provides a spectral signature 

at each pixel location and creates a data cube 
structure for a ground map (Fig. 14). In  this paper, 
we use data from the JPL Airborne Visible InfraRed 
Imaging Spectrometer (AVIRIS) and the algorithm 
for target spectral recognition described in [5]. 

AVIRIS is an optical sensor that delivers 
calibrated images of the upwelling radiance in 224 
spectral channels (bands) with wavelength ranging 
from 400-2500nm using a whiskbroom scan 
mechanism. The spectral reflectance for each pixel 
covers a 20m2 ground patch area. Data is processed 
on a per pixel set which represents a series of 1- 
dimensional array spectral signatures. Recognized 
target spectra are then labeled for processed pixel 
locations. The recognition algorithm employs the 
same generalized eigenvector solution and  neural 
network classifier described in  the above target 
recognition section to derive the filter set for various 
target classes (prototypes). However, since the data 

is a 1-dimensional array of 224 elements, procedures 
for utilization of 3DANN-R described in the SAR 
data processing section is employed. 

Figure 14: Hyperspectral  data  structure. 

Figures 15-17 shows the result of the 
classification outputs of the AVIRIS Cuprite copper 
mine scene. 

Generating the 20 template values takes 2 
micro-seconds per pixel (8 bit data resolution). To 
process 12 bit data (used in the simulations of  [SI) 
requires that the data be split in to a low and high 
order term effectively doubling the per pixel 
evaluation time. 

Figure 15: The  AVIRIS Cuprite copper mine scene. 
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Figure 16: Example spectral  prototypes ( I 1  
prototypes) used as target  spectra. 
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Figure 17: Detection  vs. false  positive rates for 
targets mixed in to Cuprite  spectra  at 10%. The 
graph shows a  false  positive rate of less than I in 
100,000 with a  detection  rate of over 90%. 

MACHINE VISION 
The 3DANN-R cube can  also  be  used  to 

perform many  of  the typical algorithms that support 
other machine  vision applications. Edge images  and 
feature detectors [ 6 ] ,  for instance, convolve kernels 
(usually with a  dimension of 7 or 9) with  an  image 
and  then combine these results with some saliency 
criteria resulting in a single image  highlighting a 
particular feature. 

Figure 18 shows the results from several 
standard kernels applied to a scene of Venice.  The 
output on a per  pixel  basis for the edge  image was 
derived  from the 4 kernels associated  with  the 
Robinson's  edge detector using a max operation. The 
other images  were the result of a single template 
passed over the image.  The entire set of images was 
generated  in a single pass  through  the Venice image 

using  only 6 templates (58 are available to do other 
work).  Examples  of other kernels or filters processed 
by the cube  include  Gaussian,  Gabor wavelets, 
gradients,  and  mean. These are standard pre- 
processing steps for numerous  vision applications. 

Figure 18: Image operations  on  scene of Venice (left) 
using standard  kernels  implemented on the  cube. The 
top  right  image is the resultant edge  map  from 
Robinson's  compass filters. The bottom left image  is 
the output from  a laplacian  kernel  and the bottom 
right is  a  simple  corner  detector. 

FUTURE WORK 
Continuing work to evaluate system 

applications of 3DANN-R are needed.  Algorithms 
based  on  the  VIGILANTE architecture to provide 
sensor fusion  for combinations of radar, IR, visible, 
UV,  and  hyperspectral sensors must be  developed for 
national  missile defense applications. Overall 
architecture and operational issues dealing with on- 
line  vs. off-line generation of targethackground 
library, logistics of system training, and priority 
assignments  when dealing with multiple targets must 
also  be  addressed. 

From the system  hardware perspective, further 
optimization  is  needed  for potential field 
deployments of this tera-ops processor. Although 
3DANN-R has  impressive capabilities, it currently 
requires a PC-case of associated computer circuitry to 
function as the complete  VIGILANTE  image 
processing system. In spite of its size, the 
segregation of the  various signal-processing functions 
onto separate printed circuit boards offered maximum 
testability of both the 3DANN-R module  and the 
support electronics. Further integration of  memory, 
control and conditioning circuitry into the design 
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would greatly reduce the size of overall systems, 
while expanding possible applications by reducing 
system  noise and potentially increasing speed. 
Currently, to feed image data, upload  templates, 
synchronize  output data, and  map each  output image 
into the appropriate memory area, the current 
VIGILANTE system  employs several circuit boards. 
This effort would eliminate these circuit boards  and 
replace  them with a small, fast package containing 
components that push  the state of the art in fast 
mixed  mode (analog-digital) processing. 

The next generation 3DANN IC  will  extend  the 
utility of the current design by integrating existing 
off-chip operations onto the  IC. A  0.1-0.2pm CMOS 
process will be used  to realize the  added  functionality 
of the  new design. The  core of  the  ASIC  will  remain 
as a 64x64 8-bit multiplying DAC array  driven by a 
64x1 9-bit input image DAC. A programmable  gain 
stage (one per  column of 64 templates), adjustable 
through the serial I/O command  input  will  be 
designed.  Together with  the off-chip FPGA,  this 
circuit will provide the  necessary  Automatic  Gain 
Control  (AGC) for dynamic in-situ gain  adjustments 
as the templates are changed. An order of magnitude 
increase in dynamic range can be  achieved  with  an 
insignificant increase in  power  and die area. 
Inclusion of an  on-chip AGC offers the  added  benefit 
of simplifying the off-chip FPGA and  memory 
control design. 

The most significant development will  be  the 
addition of a  64-channel  transimpedance amplifier 
followed by a high-speed  sample-and-hold  and 
analog multiplexor. Although  present  on every slice 
of a  64-stacked-IC module,  this analog array of 
amplifiers will only be enabled on a single die hence 
effectively summing the output signals from all 64 
slices of the module.  The  on-chip high-speed  analog 
multiplexor and sample-and-hold will  reduce  the 
existing 64  output  count to  only eight hence  reducing 
the required number of external 10-bit  ADCs from  64 
to only eight thus greatly simplifying the required 
external circuitry. 

Based  on the foundation of a working  IC  design 
while incorporating the external functions of a proven 
system architecture, the  new 3DANN mixed-mode 
ASIC will serve as the baseline element for future 
processors  capable of 10-30 teraops  and enable a 
1000 framedsecond multi-sensor  ATR system. 

CONCLUSIONS 
The  VIGILANTE vision  processing device is 

economical,  extremely small, low  power,  and  ultra- 
fast which can be  used  in space, deployed  on  the 
ground, or flown on  UAV’s. It allows  autonomous 
detection, classification, and tracking of targets and 

items of interest in  the  midst of enormous data 
streams. Thus, large-scale networks of intelligence 
collection systems  could assemble the “big picture” 
using  only  processed results, reducing the required 
bandwidth  for detailed wide-area surveillance. 
Furthermore, such system would  be  useful  in 
centralized  ground stations to reduce the analyst 
workload  required to reduce large imagery sets into 
exploitable information. 

In this paper, we have demonstrated the 
flexibility  and practicality of 3DANN-R in  various 
ATR applications. 3DANN-R is at least three orders 
of magnitude  in processing speed better than 
currently available microprocessors, and assuming 
Moore’s  law, it will take at least 15 years  for  any 
semiconductor device to catch  up. 
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